МИТЧЕЛ  И  ЕГО  ДОГАДКА

В.П. Скулачев

Фрагменты книги "Рассказы о биоэнергетике", изданной 2-м изданием в 1985 г. издательством ЦК ВЛКСМ "Молодая гвардия" в серии "Эврика".
Воспроизводится при любезном содействии автора.


НАЧАЛО ПУТИ

Однажды, просматривая в библиотеке биофака новые журналы, я наткнулся на короткую статью в "Nature" под названием "Сопряжение окисления и фосфорилирования механизмом хемиосмотического типа". Автор П. Митчел - новое имя в биоэнергетике. И термин "хемиосмотический" тоже новый. Новое имя, новое слово и небывалый, смахивающий на фантазию подход к cтарой проблеме.

...Пройдут годы, и заметка в журнале "Nature" за 1961 год станет самой цитируемой работой по биоэнергетике, а ее автор - лауреатом Нобелевской премии, присужденной вопреки традициям этих премий, не за открытие какого-то нового явления, а за догадку о его существовании.

Питер Денис Митчел родился 29 сентября 1920 года в Митчепе (графство Суррей, Англия). Сын лейтенанта британской армии был отдан родителями в Тонтонский королевский колледж. Затем он студент колледжа Иисуса в Кембриджском университете. В 1943 году выпускник университета, бакалавр искусств.

В том же году Митчел начинает работать над диссертацией под руководством профессора Д. Даниэлли. Еще в 30-е годы Даниэлли прославился как автор изящной концепции о молекулярном строении биологических мембран. После отъезда Даниэлли из Кембриджа Митчел переходит в группу по изучению ферментов, которую возглавлял известнейший энзимолог М. Диксон (энзимология - наука о ферментах).

Чтобы стать кандидатом наук (в Англии это называется "доктор философии"), Митчелу потребовалось семь лет. Вторую диссертацию - на звание доктора наук - он так и не защищал, шагнув в 1974 году сразу в члены Королевского общества.

Студентом Митчелу довелось слушать лекции Д. Флеминга. Это было время, когда из английских госпиталей выходили фронтовики, чью жизнь спас Флемингов пенициллин. И в общем-то неудивительно, что темой своей первой научной работы молодой биолог выбрал механизм действия пенициллина на бактерии.

Сначала было исследовано включение меченого фосфата в нуклеиновые кислоты. Пенициллин тормозил этот процесс. В столь сложной системе, как живая клетка, такой эффект мог объясняться либо прямым действием пенициллина на синтез нуклеиновых кислот, либо влиянием на какой-то отдаленный этап обмена веществ, либо на клеточную стенку и перенос фосфата из среды в клетку. Именно тогда Митчел впервые уловил притягательную силу тайны, окружавшей роль фосфата в энергетике живых существ.

Но пройдут годы, прежде чем он вплотную займется этой проблемой. Пять лет после защиты диссертации Митчел работает демонстратором на кафедре биохимии Кембриджского университета, а затем его приглашают старшим преподавателем на кафедру зоологии в Эдинбург. В течении следующих восьми лет, проведенных здесь, в Шотландии, он мало печатается, не спешит с продолжением опытов по действию пенициллина. Постепенно он приходит к убеждению, что история с пенициллином всего лишь частный случай, за которым стоят куда более сложные вопросы.

Митчел как-то издалека, медленно, исподволь приближается к основной проблеме биоэнергетики. Сначала мысль о том, нельзя ли отнести пенициллин к загадочным разобщителям благо в эту группу попадают самые разные по строению вещества. Казалось бы, взять да поставить опыт вроде того, что описал Ф. Липман еще в 1948 году! Но далеко ли он продвинется вперед, если даже докажет, что пенициллин действительно разобщитель? *

* Липман показал, что динитрофенол при действии нна митохондрии стимулирует их дыхание, но ингибирует сопряженное с ним фосфорилирование, т.е. синтез АТФ из АДФ и фосфата. Такой эффект называют разобщением  окислительного фосфорилирования - V.V.
Одним разобщителем больше - невелико открытие! Не лучше ли поразмыслить над тем, что такое вообще разобщение дыхания и фосфорилирования? Ясно, что здесь дело в каком-то нарушении механизма, сопрягающего эти два процесса. А что это за сопрягающий механизм?

Митчел внимательно анализирует бытовавшие в то время взгляды, на природу дыхательного фосфорилировання. Казалось бы, ему, биохимику, должна импонировать химическая схема сопряжения, объяснявшая энергетику дыхания наподобие уже известной энергетики брожения. Но как объяснить действие разобщителей?

Интуиция энзимолога (недаром Диксон - один из его учителей!) подсказала Митчелу, что динитрофенол и вся разномастная группа разобщителей не могут быть аналогами фосфата. Ферменты слишком разборчивы к объектам своей деятельности-субстратам, чтобы ошибаться так грубо.

Но что, если разобщители действуют не на фермент, а на его окружение?

Дыхательные ферменты отличаются от ферментов брожения тем, что они не плавают в клеточном соке, а прикреплены к мембранам. Так, может быть, именно мембрану и атакуют разобщители? Но зачем нужна мембрана ферментам вообще и дыхательным ферментам в частности? Вот вопрос, которым занялся Митчел, вспомнив беседы с другим своим наставником - Даниэлли, основателем учения о мембранах.

До Митчела биохимики, изучавшие мембранные ферменты, рассматривали мембрану как штатив, к которому эти ферменты крепятся. Считалось, что ферментативные процессы развертываются на поверхности, а не в "толще" мембраны. Такое мнение основывалось на факте, что субстраты ферментов - это, как правило, водорастворимые вещества. Казалось бы, они не должны проникать в сердцевину мембраны, сделанную из жира.

Однако для целой группы процессов транспорта веществ было с несомненностью установлено, что водорастворимые соединения проходят каким-то образом через жировой барьер мембраны внутрь клетки. Если, допустим, глюкоза, вообще нерастворимая в жирах, переносится через внешнюю мембрану клетки (а это факт!), почему бы не предположить, что она может быть атакована каким-то из мембранных ферментов прямо в мембране?

До Митчела химическими превращениями в мембранах практически не занимались. Изучение транспорта веществ через мембраны оставалось уделом физиологов-"транспортников". Биохимики рассматривали мембрану как помеху, от которой следует поскорее избавиться, чтобы перевести исследуемый фермент в раствор и там уже заняться им вплотную, используя весь арсенал энзимологии.

Столкнувшись с проблемами биоэнергетики, Митчел был поражен отсутствием каких бы то ни было контактов биохимиков с "транспортниками". Между ними лежала пропасть. И он занялся наведением мостов.

Итак, перед нами задача: сопрячь процесс дыхания с образованием АТФ, использовав каким-то образом свойства мембраны. Давайте рассмотрим еще раз реакцию синтеза аденозинтрифосфата АТФ:

АДР-ОН + НО-Р  ® АДР-О-Р + Н2O

Молекула Н2O при образовании АТФ, обозначенного здесь АДР-О-Р (буквами Р показаны атомы фосфора), может получиться из остатка гидроксила (ОН), отщепляемого от неорганической фосфорной кислоты (обозначенной НО-Р), и иона водорода, или протона (Н+), взятого от аденозиндифосфата (АДР-ОН).

Вода - продукт не только синтеза АТФ, но и дыхания, которое, как мы уже знаем, формально описывается реакцией взрыва гремучего газа:

2 + O2 ® 2O,

с той разницей, что в процессе участвует не молекулярный водород, а органические вещества-субстраты дыхания, поставляющие атомы водорода для образования воды.

Если две реакции, образующие общий продукт, протекают в одной пробирке, то они в конце концов могут лишь замедлить друг друга. В то же время наша цель: объяснить, почему дыхание активирует, увлекает за собой реакцию фоефорилирования аденозиндифосфата неорганической фосфорной кислотой. Итак, введя в поле нашего зрения воду, мы все еще не продвинулись к цели.

Впрочем, не совсем так. Появилась маленькая зацепка, ниточка, потянув за которую, можно попытаться. распутать клубок.

Нам нужно, чтобы дыхание влияло на фосфорилирование, и эта цель достигнута: влияние уже есть. Беда в том, что оно направлено не в ту сторону, куда хотелось бы: дыхание затрудняет реакцию фосфорилирования вместо того, чтобы облегчать ее. Но ведь мы не учли еще один непременный компонент системы - мембрану. Плохо, если вода, образующаяся при дыхании, и вода, образующаяся при синтезе АТФ, выделяются по одну и ту же сторону от мембраны, то есть в один и тот же отсек. Это равносильно протеканию двух реакций в одной пробирке. А что, если два процесса образуют воду по разные стороны от мембраны?

Тогда дыхание будет создавать избыток воды, образуя ее, например, слева от мембраны.
 

Допустим теперь, что синтез АТФ приводит к выделению воды справа от мембраны. Создается ситуация, когда синтез АТФ как бы компенсирует нехватку воды справа относительно возросшей (из-за дыхания) "концентрации воды" слева. Тем самым, в принципе говоря, тормозящее влияние дыхания на фосфорилирование должно смениться благоприятным эффектом: дыхание создает избыток продукта (воды) по одну сторону мембраны, а фосфорилирование уравнивает количества воды в двух отсеках, образуя воду по другую сторону мембраны. Таким образом, дыхание повышает вероятность реакции синтеза АТФ. Другими словами, дыхание сопрягается с фосфорилированием.

Наконец-то!

Гипотеза всегда основывается на предположениях. Она может быть отвергнута, если хотя бы одно из предположений противоречит уже известным фактам.

Нет ли таких противоречий в "водной" гипотезе сопряжения?

К сожалению, есть.

В предложенной схеме дыхание образует, а фосфорилирование нивелирует различие в количестве воды в двух отсеках, разделенных мембраной. Чтобы такая система работала, мембрана должна быть непроницаемой для воды. Если не выполнено это условие, избыток воды, образуемой слева от мембраны за счет дыхания, "утечет" на другую ее сторону, где воды меньше. В результате там количество воды повысится без всякого фосфорилирования, и энергия, выделившаяся при дыхании, будет безвозвратно потеряна.

Так вот, давно известно, что биологические мембраны проницаемы для воды. Они вообще не могут служить барьером для таких маленьких нейтральных молекул, как Н2O. Умозрительное построение "водной гипотезы" рушится!

Но может быть, из тех же блоков удастся создать что-нибудь более устойчивое?

На чем же мы споткнулись?

На том, что мембраны - негодный барьер для воды, продукта дыхания и фосфорилирования. Но из чего получается вода, например, при фосфорилировании? Из иона водорода (Н+), отнятого от АДФ, и гидроксила (ОН), отнятого от фосфата. Так ведь Н+ и ОН - заряженные частицы, ионы, а для ионов мембраны, как правило, практически непроницаемы!

Итак, нам нужно, чтобы при синтезе АТФ получались не вода, а ионы Н+ и ОН, да еще по разные стороны мембраны. :

Если бы теперь дыхание тоже образовывало не воду, а Н+ и ОН, то можно было бы так расположить ферменты в мембране, чтобы при дыхании ион Н+ выделялся слева от мембраны, а при фосфорилировании - справа от нее. Тогда окажется, что дыхание образует слева от мембраны кислоту, справа - щелочь, а процесс форфорилирования просто-напросто нейтрализует кислоту и щелочь.;

Таким образом, реакция нейтрализации кислоты и щелочи, образованных дыханием, станет движущей силой процесса синтеза АТФ.

Чтобы завершить строительство "интеллектуального собора", остается лишь догадаться, как именно дыхание образует кислоту и щелочь.

Известно, что окисление субстратов дыхания кислородом катализируется дыхательными ферментами. Они бывают двух типов. Одни присоединяют атомы водорода, другие присоединяют электроны. Если окислить донор водорода (AH2) ферментом - акцептором электронов (С), то одним из продуктов реакции окажутся ноны Н+:

АН2 + 2С ® А+2Се+2Н+.

Если теперь восстановить кислород посредством Се, то произойдет потребление ионов Н+:

2Се + О + 2Н+ ® 2С+ Н2O.

Вот мы и свели концы с концами! Такова хемиосмотическая гипотеза Митчела. Она схематично изображена на рисунке.

Окисление субстрата АН2 (реакция 1) ферментом - акцептором электронов, который не указан, чтобы не усложнять схему, происходит на левой поверхности мембраны. В результате электроны присоединяются к ферменту, а протоны уходят в воду.

Затем электроны переносятся ферментом на правую сторону мембраны и там восстанавливают молекулярный кислород или какой-нибудь другой акцептор водорода (.в общей форме обоаначен буквой В). Вещество В, присоединив электроны, связывает ионы АН2 справа от мембраны, превращаясь в ВН2.

Синтез АТФ (реакция 2) происходит таким образом, что два иона Н+ отщепляются от АДФ и фосфата справа от мембраны, компенсируя потерю двух Н+ при восстановлении вещества В. Один из кислородных атомов фосфата переносится на другую сторону мембраны и, присоединив два иона Н+ из левого отсека, образует НаО. Остаток фосфорила присоединяется к АДФ, давая АТФ.

По схеме Митчела, показанной на рисунке, роль дыхания в синтезе АТФ ограничивается созданием избытка Н+ на одной стороне мембраны по сравнению с другой ее стороной. Дыхание как бы сгущает, концентрирует ионы Н+ в одном из двух отсеков системы, разделенных мембраной. Это означает, что оно совершает осмотическую работу. Затем осмотическая энергия, накопленная в виде разности концентраций ионов Н+ между левым и правым отсеками, расходуется на химическую работу, то есть на синтез АТФ.

Вот почему Митчел назвал свою схему "хемиосмо-тической гипотезой". Она выгодно отличается от старой, "химической" схемы, приведенной на, странице 36, по крайней мере в одном своем аспекте. Митчел обошелся без неуловимых промежуточных продуктов вроде АН2 • фермент, А • фермент и А • фосфат. Ему вообще не нужны были какие-либо специальные продукты, общие для реакций дыхания и фосфорилирования. По Митчелу, связующим звеном двух процессов служат водородные ионы.

Итак, хемиосмотическая гипотеза освободилась от одного из недостатков старых схем. В то же время она объяснила два ранее непонятных момента: необходимость мембран и механизм действия веществ-разобщителей.

Совершенно очевидно, что устройство, придуманное Митчелом, нуждается в двух пространствах, разделенных мембраной, непроницаемой для ионов Н+ и ОН. Любое нарушение изолирующих свойств мембраны, например повышение ее проницаемости для Н+, то есть протонной проводимости, должно подавлять процесс синтеза АТФ. Что касается дыхания, то при повышении проводимости оно ускорится, так как перенос водорода и электронов, уже не приводящий к накоплению энергии, "покатится под гору", превращая всю энергию дыхания в тепло.

Так ведь это же и есть разобщение дыхания и фосфорилирования: тот самый феномен, над объяснением которого бились авторы "химических" гипотез, заставляя динитрофенол уподобиться фосфату в реакции с ферментом!

Митчел обратил внимание на то, что все разобщители - растворимые в жирах слабые кислоты, имеющие в своем составе обратимо связывающийся протон. Так возникло предположение, что разобщители служат переносчиками протонов через мембрану. Они связывают Н+ на той ее стороне, где дыхание создает избыток ионов водорода, затем диффундируют, неся лишний протон, через мембрану, и освобождают Н+ в противоположном отсеке, где водородные ионы в дефиците.

КОРНИ ГИПОТЕЗЫ

Пожалуй, только два факта (оба негативного свойства!) были положены Митчелом в основу его гипотезы в далеком уже 1961 году. Это невозможность найти химические продукты, которые были бы общими для дыхания и фосфорилирования, и необъяснимость роли мембран и действия разобщителей в рамках традиционных представлений, почерпнутых из аналогии с брожением.

Однако было бы ошибочным полагать, что хемиосмотическая гипотеза возникла совсем уж на пустом месте. Еще в 1945 году швед г. Лундегард писал о возможности образования кислоты и щелочи мембранными окислительными ферментами. Лундегард был первым, кто "уложил" дыхательный фермент поперек мембраны, увидев в этом механизм концентрирования ионов. В 40-е годы эту гипотетическую концепцию подхватили И. Конвей и Т. Брейди, стремившиеся таким способом объяснить механизм образования кислоты в желудке. В начале 50-х годов ту же мысль обсуждали в Англии Р. Деви, А. Огстон и Г. Кребс (тот самый Кребс, имя которого увековечено на карте обмена веществ в связи с циклом карбоновых кислот). В 1960году известный биохимик Р. Робертсон, избранный впоследствии президентом Академии наук Австралии, писал о разделении зарядов как о первичной стадии получения энергии, необходимой для синтеза АТФ.

Однако все эти предположения существовали сами по себе, разрозненно, их авторы не пытались создать единую схему, признанную объяснить механизм превращения энергии в митохондриях. Выдвинув гипотезу о разделении Н+ и ОН при синтезе АТФ, Митчел заполнил недостающее звено, замкнул "протонный цикл" и создал непротиворечивую концепцию, позволяющую понять природу сопряжения между дыханием и фосфорилированием.

ОДНА ИЗ МНОГИХ ГИПОТЕЗ?

В 1961 роду схема Митчела в краткой форме была тотчас напечатана журналом "Nature" (трудности с публикациями возникнут позже!).

Новую концепцию восприняли первоначально как еще одно умозрительное предположение в длинном ряду биоэнергетических гипотез. В начале 60-х годов была большая мода на эти гипотезы. Поскольку речь шла о главных системах энергообеспечения живых клеток, ясно было, что победителя ждет хороший приз, и каждый уважающий себя биоэнергетик спешил выдвинуть собственную схему энергетического сопряжения. Гипотезы возникли и, не выдержав испытания опытом, гибли, чтобы уступить место новым предположениям.

Некоторые из них казались столь фантастичными, что не удостаивались проверки: никто не спешил вкусить сомнительного вида плод, и он, перезрев, падал и исчезал в "быстром и мутном потоке информации". Это случалось прежде всего тогда, когда сам автор гипотезы не делал попытки проверить предсказательную силу своих постулатов.

Поначалу казалось, что такая судьба уготована и хемиосмотической теории. Шли годы, а Митчел все молчал. Прошел даже слух, что он вовсе удалился от дел.

ГЛИНН ХАУЗ. ОСЛЫ И ДЕТИ

Митчел действительно не ставил опыты по проверке своей концепции. Вскоре после первой публикации гипотезы он тяжело заболел и решил оставить работу в университете, с начальством которого у него всегда были нелады. Он покинул Эдинбург и на деньги, только что полученные по наследству, купил ферму на самом юге Англии, в медвежьем (по английским понятиям) углу, в нескольких милях от маленького городка Бодмин, графство Корнуэлл. Эти места известны нам по Конан Дойлу ("Собака Баскервиллей"): Бодмин расположен чуть к югу от тех мрачных болот, где произошли захватывающие события с участием Шерлока Холмса. Научных учреждений в этих краях нет, зато сохранились легенды о пиратах, избравших окрестности Бодмина местом своего последнего прибежища на английских островах.

Прежний владелец фермы, получив причитавшуюся ему сумму, поспешил удалиться, оставив Митчелу стадо коров, которых доктор философии вынужден был доить собственноручно, чтобы предотвратить их страдания.

На территории фермы находились развалины старинного дома, принадлежавшего во времена наполеоновских войн британскому адмиралу. Как показали раскопки, под адмиральским домом были погребены еще более древние развалины каменного строения, где жило когда-то семейство некоего Глинна, начавшего платить подати королю чуть ли не тысячу лет тому назад.

Митчел решил восстановить дом адмирала, а заодно и дом Глинна, заключенный в его недрах. Были приглашены архитектор и бригадир строителей, с которыми Митчел немедленно рассорился. Других в Бодмине достать было непросто, и хозяин решил сам взяться за постройку. Он нанял двух каменщиков.

- Чудесные простые люди, - рассказывал мне Митчел, - жаль только, что один из них совершенно неожиданно оказался беглым каторжником, осужденным за убийство!

Когда полиция заинтересовалась одним из новых его коллег, Митчелу пришлось сколачивать другую артель. Эта задача была не без труда решена, и На склоне холма у живописной речки Фой стали помаленьку вырисовываться очертания двухэтажного дома с дорическими колоннами вдоль фасада.

Здоровье Митчела пошло на поправку. Причиной тому была смена занятий, образа жизни и климата, а также, по-видимому, аскорбиновая кислота, которую он принимал в огромных количествах, следуя рецепту Л. Полинга (довольно редкий случай, когда один нобелевский лауреат по химии излечил другого, будущего нобелевского лауреата по химии).

Питер Митчелл

Обосновавшись на новом месте и выздоровев, Митчел завел двух ослов - животных, которые, как он однажды мне признался, вызывают у него наибольшую симпатию. Других ослов в графстве Корнуэлл не было. По утрам Митчел запрягал одного из них в коляску и вез своих многочисленных детей в школу ("Чтобы школа, - как говорил он, - не вызывала у детей слишком уж большой неприязни"). Затем отправлялся на ферму (в его руках она оказалась выгодным предприятием) или разъезжал по окрестностям в поисках развалившихся замков. Их восстановление стало новой страстью Митчела. Вплоть до недавнего времени один день в неделю он посвящал архитектурному надзору за возрождением какого-либо утраченного шедевра старинной архитектуры в Корнуэлле.

ПОРАЖЕНИЯ И ПОБЕДЫ

Мир в Глинн Хаузе был взорван, когда однажды Митчел решил просмотреть пачку научных журналов за последние два-три года. С надеждой листал он страницы многочисленных статей по биоэнергетике. Что сталось с его гипотезой? Быть может, получены факты, ее подтвердившие? Или она опровергнута? Нет, хуже. Она не замечена.

Ах так! Митчел немедленно берется за организацию лаборатории, чтобы поставить опыты и проверить свою догадку. Он сразу же отказался от мысли вернуться в Эдинбург или любой другой город. Хватит с него тамошнего начальства и воздуха, отравленного автомобилями (еще один штрих к портрету: Митчел с одним из сыновей конструировал электромобиль). Лаборатория должна быть здесь, в Глинн Хаузе. Его собственная лаборатория - предприятие, независимое от всякой научной и ненаучной бюрократии.

А деньги? Что же, можно построить коттеджи и сдавать их дачникам. Кроме того, есть еще и доход от фермы? Но захочет ли кто-нибудь поехать в такую глушь, чтобы помочь ему в экспериментах? Посмотрим, не откликнется ли "старая гвардия", сотрудники его давно распавшейся группы в Эдинбурге.

Откликнулась Дж. Мойл. Пройдет несколько лет, и это имя прославится среди биоэнергетиков, но пока Мойл - безвестная и единственная соратница Митчела в его начинании. Нет слов, как благодарен он ей. И во вновь основанном научном предприятии под громким названием "Глинновские лаборатории для стимулирования фундаментальных биологических исследований" Митчел решает иметь двух директоров: это Мойл и он сам. Не беда, что директоров двое, а в их подчинении только один лаборант. Самоотверженность должна быть вознаграждена, и немедленно! Так Мойл стала директором.

Для лаборатории, размещенной в нескольких комнатах на первом этаже Глинн Хауза, Митчел закупил самое необходимое - центрифугу, полярограф, счетчик изотопов, реактивы. И начались опыты.

ПЕРВЫЕ ОПЫТЫ МИТЧЕЛА И МОЙЛ

Митчел взялся за то, что было доступно при его более чем скромном оборудовании и, мягко говоря, не совсем укомплектованном штате.

Гипотеза предсказывала, что дыхание должно образовывать по одну сторону от мембраны кислоту, а по другую - щелочь. Так давайте в процессе дыхания мерить кислотность среды, благо для этого не требуется ничего, кроме рН-метра - простенького прибора, состоящего из пары электродов и вольтметра.

Из печени белых крыс выделяли митохондрии, помещали их в бескислородные условия, а затем начинали реакцию окисления добавкой кислорода. Не изменится ли кислотность среды, в которой инкубируются митохондрии?

Первые опыты - первые неудачи. Но, может быть, рН-метр слишком груб, чтобы почувствовать небольшие сдвиги в концентрации Н+ ионов? Митчел становится стеклодувом и конструирует изящную ячейку совсем маленького объема и очень чувствительный электрод. Вновь опыт с добавкой кислорода... Есть! Прибор регистрирует изменение рН. Среда закисляется. А что, если добавить вместо кислорода АТФ?

Снова закисление! Именно этого можно было ожидать, если бы АТФ расщеплялся той системой, которая в присутствии кислорода синтезирует АТФ.

Митчел и Мойл направляют в "Nature" краткое сообщение, что их опыты подтверждают хемиосмотическую гипотезу.

"ВАРШАВСКАЯ БИТВА". ПОРАЖЕНИЕ

Апрель 1966 года. Варшава. Европейский съезд биохимиков.

Англичанин Б. Чэпел рассказывает о своих опытах с фосфолипидными мицеллами - полыми внутри сферическими частицами, стенки которых сделаны из жироподобных веществ, полученных из биомембран.

Оказывается, мицеллы отвечают на добавки веществ-разобщителей и антибиотика валиномицина точно такими же изменениями концентрации ионов калия и водорода, как митохондрии в опытах Митчела и Мойл. Стало быть, разобщители и валиномицин атакуют липидный компонент системы, а не белки-ферменты: в мицеллах ферментов просто нет. Напомним, что сторонники "химических" схем сопряжения считали мишенью действия разобщителей именно ферменты. Казалось бы, новое подтверждение гипотезы Митчела? Однако Чэпел пока уклоняется от такого вывода.

После съезда австралиец Э. Слейтер и польский биохимик Л. Войчак собирают семинар. Присутствует узкий круг специалистов по энергетике митохондрии. Среди них (впервые!) Митчел. Более того, ему оказана честь председательствовать на одном из заседаний.

Митчел использует вводное слово председателя, чтобы изложить хемиосмотическую концепцию. В поддержку своей гипотезы он приводит полученные с Дж. Мойл данные опытов на рН-метре. Встает Б. Чанс:

- А что будет, если в вашем, доктор Митчел, опыте добавить вещество, связывающее ионы кальция?

- Я так полагаю, что ничего особенного не случится.

- Мы добавили такое вещество, и все ваши изменения кислотности исчезли! Добавили кальций - и они возникли вновь. По-видимому, вы обнаружили какой-то побочный эффект, сопутствующий переносу кальция в митохондрии.

С Митчелом я впервые познакомился в Варшаве, Чанса знал уже пять лет, с Московского международного конгресса биохимиков. Двое спорящих являли собой разительный контраст: англичанин Митчел немного сутулый, с крупной головой и высоким лбом, редеющей шевелюрой чуть вьющихся седеющих волос, вспыльчивый и добродушный, как мистер Пикквик, и Чанс, стройный, подтянутый американец с прямыми, гладко зачесанными назад волосами и жестким взглядом "морского волка" (в свои 54 года он стал чемпионом мира по парусным гонкам). Чанс старше Митчела на восемь лет, но он кажется моложе своего противника, динамичнее и гораздо приспособленней к спору.

Пытаясь опровергнуть Митчела, Чанс применил свою "тяжелую артиллерию" физического эксперимента: прецизионный спектрофотометр для мутных сред, быструю регистрацию параметров в миллисекундной шкале времени и т.д. Митчел мог противопоставить этой новейшей американской технике лишь свой скромный самодельный рН-метр.

Вслед за Чансом Митчела атакуют другие участники семинара.

А что же Чэпел?

Он молчит...

Я прошу у Митчела слова. Но тот забыл о своих функциях председателя, смешался и потерял контроль над собранием.

Вновь говорит Чанс. Его слова как приговор несостоявшейся теории:

- Идея фантастична, результаты опытов неясны!

У меня сохранилась фотография: Митчел за кофе в перерыве между заседаниями, сразу после поражения. Рядом Чэпел. Митчел что-то доказывает своему собеседнику. Тот, отвернувшись, всем своим видом демонстрирует сомнение.

СЕРЕБРЯНЫЙ ЗВУК ТРУБЫ

Варшавский съезд стал одним из ключевых моментов в моей научной судьбе. После завершения работ по терморегулярному разобщению в мышцах (помните опыт со стрижеными голубями?) я понял: чтобы идти вперед, надо знать, как устроен загадочный механизм, сопрягающий дыхание с синтезом АТФ.

Вначале я отдал дань химической схеме. Но опыты, что мы вели с И. Севериной и Ю. Евтодиенко в одном из институтов на улице Вавилова, давали непредсказуемые результаты. Мы обнаружили кое-какие новые эффекты и даже открыли, сами того не желая, сильнейший дыхательный яд, но не приблизились к решению проблемы.

Я жил тогда у Калужской заставы. На моем пути к улице Вавилова был пустырь. Местами из-под песка пробивались зеленые ростки. Я загадал: если за лето пустырь покроется травой, мы на верной дороге. Вернувшись в конце августа из отпуска, я вновь увидел пустырь. По нему гулял ветер, закручивая песчаную пыль в маленькие смерчи. Земля осталась бесплодной.

К весне 1966 года стало ясно, что мы в тупике. В красной папке, где я обычно хранил программы будущих опытов моих сотрудников, впервые появился листок под девизом "План отступления". За мною тогда уже был отдел биоэнергетики в новой лаборатории, только что созданной в МГУ одним из отцов молекулярной биологии, академиком А. Белозерским.

Непросто было преодолеть инерцию. Идут опыты, публикуются статьи, делаются дипломные и аспирантские работы, и вдруг появляется шеф (шеф-то, кстати, без году неделя!) с сообщением, что прежний его план ни к черту, а двигаться нужно совсем в другую сторону...

Я все медлил, откладывал решающий разговор с ребятами в лаборатории и с таким вот настроением поехал в Варшаву. А здесь знакомство с Митчелом, баталия между ним и Чансом и, наконец, сокрушительное поражение Митчела.

Но не это, другое всплывает в памяти прежде всего, когда я вспоминаю Варшавский съезд. Полутемный конференц-зал, огромный экран, и на нем по темному фону белая кривая, неудержимо стремящаяся вниз.

Опыт Б. Чэпела. Липидные мицеллы теряют калий, когда к ним добавили динитрофенол и валиномицин.

Выходит, мы три года искали то, что никто не терял! Не умный, всемогущий белок, а глупый липид, от которого только и требуется, что создать белку подходящие условия для его сложной работы, беспомощный, инертный жир - вот в действительности кто главное действующее лицо во всей этой драме под названием "разобщение".

Из Варшавы я отправился в Краков. Поезд пришел поздно вечером. Была темная, влажная весенняя ночь. По улицам прекрасного незнакомого города я отправился искать гостиницу. Вдруг где-то почти над моей головой в черном апрельском небе грянул тревожный серебряный звук трубы и оборвался на полуноте. Это легендарный трубач с башни Марьяцкого собора возвещал о появлении врагов у городских стен и, сраженный вражеской стрелой, умолкал, не допев свою звонкую песню... С тех пор всякий раз, когда я мысленно обращаюсь к весне 1966 года, из недр памяти возникает белая по черному фону кривая Чэпела и этот трубач на Марьяцком соборе.

ПЕРВАЯ "СЕРАЯ" КНИГА МИТЧЕЛА

Вернувшись в тишину своего Глинн Хауза, Митчел повторил тот опыт, которым сокрушил его в Варшаве Чанс. Напрасно Мойл вглядывалась в показания рН-метра: кислород не вызывал закисления, если в среде было вещество, связывающее кальций. Так что же, Чане был прав там, в Варшаве? В этом конкретном опыте - да.

Такую гипотезу, как схема Митчела, нельзя доказать, имея в руках один только простейший рН-метр. Но ее нельзя и опровергнуть столь простым способом!

А все-таки при чем тут кальций? Насколько велико в действительности должно быть закисление, если работает дыхательная цепь, закрепленная поперек митохондриальной мембраны?

Митчел садится за письменный стол, а опыты временно препоручает своей верной сотруднице Мойл и лаборанту.

Временно?

Нет, навсегда. Отныне Митчел уже, как правило, не участвует в опытах. Он пишет книгу. Свою первую книгу с подробным изложением хемиосмотической теории.

Собственно, книга была начата еще до Варшавы. Но в окончательном виде она была готова лишь к концу мая 1966 года. Не рассчитывая найти сколько-нибудь серьезное издательство, которое решилось бы на публикацию подробного описания только что публично отвергнутой гипотезы, Митчел напечатал книгу сам, на ротапринте.

Так появилась на свет брошюра в сером картонном переплете, на котором значилось: "Хемиосмотическое сопряжение в окислительном и фотосинтетическом фосфорилировании". Книга была разослана участникам варшавской дискуссии.

Этот экземпляр первой "Серой книги" (была еще и вторая) Митчелл прислал М.М. Шемякину -
известному советскому химику, основателю Института химии природных соединений АН CССР
(ныне Институт биоорганической химии РАН)

В конце того же 1966 года Митчела поддержала его alma mater - Кембриджский университет, где согласились опубликовать сокращенный вариант "Серой книги" в "Biological Reviews".

В своей книге, ныне одной из самых широко цитируемых работ по биоэнергетике, Митчел рассмотрел механизмы реакций, которые могли бы сопровождаться переносом протонов и электронов через мембраны. Там же содержался ответ на конкретный вопрос, в какой степени среда инкубации с митохондриями должна за-кисляться при добавлении кислорода. Расчет дал курьезный результат: оказалось, что Митчел и Мойл не могли увидеть закисления среды в своих опытах 1965 года, если бы это закисление было обусловлено одним только разделением Н+ и ОН в митохондриальной мембране.

Дело в том, что разделение противоионов должно создавать разность электрических потенциалов (ее обозначают Dy) между двумя разграниченными мембраной отсеками. Если при дыхании ионы Н+ окажутся снаружи митохондрии, а ионы ОН - внутри, то внутренность митохондрии зарядится отрицательно, а внешний объем - положительно. Величина Dy будет тем больше, чем больше противоионов будет разделено мембраной.

Но Dy не может возрастать беспредельно. Чем выше величина отрицательного заряда внутри митохондрии, тем труднее дыханию поддерживать процесс разделения ионов Н+ и ОН. В какой-то момент разделение зарядов прекратится. Это случится тогда, когда выигрыш в энергии при реакциях дыхания окажется недостаточным, чтобы покрыть энергетический дефицит, возникающий при разделении противоионов. Именно в этот момент дальнейшая зарядка электрической емкости мембраны станет невозможной.

Сопоставляя электрическую емкость мембраны и выделение энергии в процессе дыхания, Митчел заключил: мембрана зарядится так быстро, что кислотность снаружи митохондрии не успеет измениться сколько-нибудь заметным образом.

Не подрывает ли этот расчет хемиосмотическую гипотезу? Ведь мы говорили все время о нейтрализации кислоты и щелочи. Оказывается, что нет.

Обратимся еще раз к схеме Митчела. Согласно гипотезе синтез АТФ рождает положительные заряды (Н+) во внутреннем пространстве митохондрии, то есть в отсеке, заряжающемся за счет дыхания отрицательно. Та же реакция синтеза АТФ приводит к уменьшению количества положительных зарядов (Н+) снаружи митохондрии, то есть там, где дыхание создает знак "плюс". Таким образом, синтез АТФ нейтрализует работу дыхательной системы, не только поставляя кислоту в защелачивающийся дыханием внутренний отсек митохондрии, но и образуя в этом отсеке положительные заряды. Тем самым дыхание может служить движущей силой для процесса фосфорилирования, даже не образуя сколько-нибудь заметной разности концентраций водородных ионов. Достаточно создания Dy.

Но что же в таком случае измеряли Митчел и Мойл в своих первых опытах? Откуда взялось закисление и что за магический эффект вещества, связывающего кальций?

Если закисление действительно было связано с работой дыхательных ферментов, то в условиях опыта электрическая емкость мембраны не ограничивала процесса разделения противоионов при дыхании.

Что, если в отрицательно заряженную внутреннюю полость митохондрии проникал какой-нибудь катион, например, кальций?

В своих опытах Митчел и Мойл не добавляли ионов кальция, но специально и не освобождались от них. Источником кальция могли быть реактивы, да и сами митохондрии. Но если все обстоит именно так, то давайте добавим кальций, и закисление должно возрасти... Митчел попросил свою сотрудницу поставить этот опыт. Закисление резко увеличилось!

Таков был ответ Чансу. Но еще не доказательство гипотезы; скорее свидетельство ее непотопляемости теми средствами, которые употребил в Варшаве знаменитый яхтсмен.

ПРОТОНОФОРЫ

"Серая книга" Митчела окончательно укрепила мое убеждение, что новая концепция достойна стать рабочей гипотезой биоэнергетики, заменив неудачную химическую схему. К тому времени мы уже были подготовлены к принятию хемиосмотической гипотезы всем предшествующим развитием своих работ: открытием эффекта двух путей окисления, а затем терморегуляторного разобщения в мышечных митохондриях и, наконец, отрицательным итогом опытов по проверке одного из вариантов химической схемы.

В частности, Митчел давал простой ответ на вопрос о том, как можно представить себе быстрое переключение дыхания на холостой путь, например, при охлаждении организма. Напомним, что, по Митчелу, дыхание образует избыток ионов водорода по одну сторону мембраны митохондрии, а при синтезе АТФ эти избыточные ионы водорода потребляются. Достаточно повысить проницаемость мембраны для протонов, как Dy и разность рН исчезнут без всякого синтеза АТФ, дыхание пойдет без фосфорилирования, а вся энергия окислительных реакций превратится в тепло.

Впоследствии оказалось, что в разобщении на холоде участвуют свободные жирные кислоты, которые действительно повышают проницаемость мембран для водородных ионов. Но это уже следующая история.

В 1966 году сотрудник института биофизики Е. Либерман задался целью получить искусственные мембраны с такими же электрическими характеристиками, что и мембраны биологические. Он добавлял к фосфолипидам, из которых делали искусственные мембраны, различные вещества и смотрел, не снизится ли сопротивление до величин, характерных для внешней мембраны нейрона, популярного объекта электрофизиологических исследований. Одним из соединений, снижающих сопротивление, оказались жирные кислоты. Именно эти вещества, как мы думали, могут играть роль природных разобщителей.

В том же году А. Ленинджер, уже упоминавшийся нами известный биоэнергетик и автор самого знаменитого учебника по биохимии, поставил опыт по действию динитрофенола на искусственную мембрану.


2, 4 - Динитрофенол

Как и у Е. Либермана, это была так называемая черная мембрана из фосфолипидов (черная - значит, такая тонкая, меньше длины волны видимого света, что уже не преломляет световых лучей). Мембрана закрывала небольшое отверстие в тефлоновой перегородке, разделяющей кювету на два отсека. В каждый из отсеков погружено по электроду, между ними вольтметр. В этой простой системе легко измерить сопротивление черной мембраны. Так вот оказалось, что добавка динитрофенола в оба отсека кюветы или даже в один из них заметно снижает сопротивление мембраны.

Сопоставив эти два наблюдения: одно, сделанное в Пущине, и другое - в Балтиморе, - с результатами Б. Чэпела на фосфолипидных мицеллах, я решил, что перед нами прекрасная модель для проверки одного из постулатов хемиосмотмчеекой теории, а именно концепции разобщителей как переносчиков водородных ионов.

Как-то поздно вечером, возвращаясь из МГУ с знаменитого биологического семинара И. Гельфанда вместе с Е. Либерманом, я предложил ему взять несколько разобщителей и проверить их действие на сопротивление черных мембран. Он немедленно согласился, заметив с воодушевлением, что это будет его первый опыт, где в равной степени окажется интересным как положительный, так и отрицательный результат.

Сначала Е. Либерман испытал два вещества, в сто раз отличавшиеся по разобщающей активности: слабый разобщитель динитрофенол и сильный с длинным названием тетрахлортрифторметилбензимидазол (ТТФБ).

ТТФБ

Добавление динитрофенола снижало сопротивление мембраны, что уже не было новостью после опытов Ленинджера. А как поведет себя мембрана после добавления ТТФБ? Первое впечатление - от капли этого вещества она просто лопнула. Но нет, мембрана-то есть, а вот ее сопротивление - оно катастрофически снизилось.

Измерение показало, что ТТФБ снижает сопротивление черной мембраны примерно в сто раз сильнее, чем динитрофенол.

Из 18 атомов, образующих молекулу ТТФБ, только один - атом водорода. Если ТТФБ - переносчик водородных ионов, то можно было бы думать, что замещение этого единственного водорода (кстати, легкоотщепляющегося) должно лишить вещество его способности разобщать дыхание и фосфорилирование и понижать сопротивление черной мембраны. Опыт подтвердил и это предположение.

* Эти и другие эксперименты с модельными мембранами подробно описаны в превосходной книжке Е.А. Либермана "Живая клетка", изданной в 1982 г. издательством АН СССР "Наука" в научно-популярной серии "Наука и технический прогресс" - V.V.
Затем был взят еще десяток разобщителей, и всегда вещества, более активные в опытах с митохондриями, были более активны и на искусственных мембранах. Кроме того, удалось предсказать разобщающее действие веществ, ранее не подозревавшихся в этом качестве. Если выяснялось, что определенное химическое соединение создает протонную проводимость в черных мембранах, то можно было не сомневаться: оно разобщит дыхание и фосфорилирование в последующем опыте с митохондриями. Это правило не знало исключений. Так был сделан вывод о справедливости предположения Митчела, касающегося природы феномена разобщения.

Вещества, повышающие протонную проводимость искусственных и биологических мембран, я окрестил "протонофорами".

КРАСНЫЕ ФЛАЖКИ НА КАРТЕ

Работа по протонофорам вызвала ожесточенные споры, которые теперь, спустя 15 лет, кажутся уже не слишком интересными. Важно, что опыты оказались достаточно простыми, чтобы их воспроизвел любой биофизик, способный "повесить" черную мембрану на отверстие в тефлоновой перегородке. Вскоре термин "протонофор" замелькал на страницах научных статей, и изучение протонофоров стало новым направлением науки о мембранах.

Митчел воспринял приятную для себя весть по-своему. Он завел большую географическую карту мира и воткнул в Москву красный флажок.

Когда в 1975 году молодой сотрудник нашей лаборатории И. Козлов посетил Глинн Хауз, он обнаружил, что карта усеяна красными флажками: так Митчел отмечал места, откуда приходили вести о подтверждении хемиосмотической теории.


 



VIVOS VOCO! - ЗОВУ ЖИВЫХ!